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Treatment of cyclobutanone having an o-styryl group at the
2-position with a catalytic amount of rhodium–phosphine com-
plex afforded eight-membered ring ketones via intramolecular
insertion of the C=C bond into the C–C single bond of the cyclo-
butanone.

Cleavage of a carbon–carbon single bond by transition met-
als is potentially an attractive elementary step in the develop-
ment of new catalytic organic transformations.1 We have found
that rhodium(I) complexes can undergo insertion into the bond
between the carbonyl carbon and the �-carbon of cyclobuta-
nones.2 The potential of this elementary step was demonstrated
by the successful intramolecular olefin insertion reaction into a
carbon–carbon single bond that constructs a complex bicy-
clo[3.2.1] skeleton from 3-(o-styryl)cyclobutanone in a single
step.3 An increase of the repertoire of applications expands the
synthetic potential of the transition-metal catalyzed carbon–car-
bon bond cleaving reactions. On the other hand, eight-membered
carbocycles are often an important structural feature of biologi-
cally active compounds. Therefore, the development of new
methods for their synthesis has been a continuing challenge, al-
though a formidable objective.4 The new olefin insertion reac-
tion reported herein constructs eight-membered carbocyclic
rings from 2-(o-styryl)cyclobutanone in a single chemical oper-
ation with good atom economy.

Cyclobutanone 1a, equipped with an o-styryl group at the 2-
position, was prepared from 2-vinylbenzaldehyde according to
the Trost’s method.5 2-(o-Styryl)cyclobutanone 1a thus obtained
was heated to 140 �C in m-xylene in the presence of a rhodium
complex prepared in situ from [Rh(cod)2]PF6 (5mol%, cod =
cycloocta-1,5-diene)6 and a phosphine ligand. When tris(o-
methoxyphenyl)phosphine (24mol%) was used as the ligand,
substrate 1a was consumed after 24 h. Chromatographic isola-
tion afforded a mixture of unsaturated eight-membered ring ke-
tones (2a and 3a, 84:16) in 75% combined yield (Scheme 1).7 A
small amount (ca. 10% by GC) of decarbonylation products, i.e.,
o-cyclopropylstyrene and 1-[(E)-prop-1-en-1-yl]-2-vinylben-

zene were formed as the by-products. Decreasing the phosphine
loading (6mol%) led to the formation of a significant amount
(47% by GC) of the decarbonylation products. Hydrogenation
of a mixture of 2a and 3a over palladium on charcoal gave the
single product 4 in 95% yield, providing further support for
the structures of 2a and 3a.

The following mechanism, shown in Scheme 2, explains the
formation of the isomeric unsaturated eight-membered ring ke-
tones 2a and 3a from 1a. Rhodium(I) initially undergoes inser-
tion between the carbonyl carbon and the substituted �-carbon
to afford the five-membered acylrhodium intermediate 5. The vi-
nyl group might coordinate to rhodium, thereby directing it to
the proximal �-bond, although substantial acceleration was not
observed in comparison to the former examples.2,3 Then migra-
tory insertion of the vinyl group into the rhodium–acyl carbon
bond generates the bicyclic intermediate 6.8 Subsequent �-elim-
ination of Ha located � to the carbonyl group furnishes the inter-
mediate 7 having an eight-membered ring skeleton. Subsequent
reductive elimination gives rise to the product 2a with the regen-
eration of the rhodium(I) species. Compound 3a also arises from
6, via �-elimination of Hb located � to the carbonyl group as
shown in Scheme 2.9 Facility of the �-hydride elimination would
be affected by the dihedral angle Rh–C–C–Ha or b.

Phosphine ligands other than tris(o-methoxyphenyl)phos-
phine were also examined. The use of more electron-donating
trialkylphophines, like P(n-Bu)3, P(cyclo-Hex)3, and P(t-Bu)3,
resulted in the formation of a complex mixture of products.
Among triarylphosphines, triphenylphosphine and tris(p-me-
thoxyphenyl)phosphine gave very poor yield of 2a and 3a. Inter-
estingly, triarylphosphines having o-methoxyphenyl groups
worked well to afford the eight-membered ring products, al-
though the reason for this is unclear (Table 1). Bis(o-methoxy-
phenyl)phenylphosphine gave a result comparable to tris(o-
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Scheme 1. Reaction of 1a forming eight-membered ketones 2a
and 3a.
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Scheme 2. Postulated mechanism for the formation of eight-
membered ketones 2 and 3.
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methoxyphenyl)phosphine. (o-Methoxyphenyl)diphenylphos-
phine exhibited an inferior activity. Use of bidentate phosphines,
Ph2P(CH2)nPPh2 (n ¼ 2, 3, and 4), resulted in the predominant
formation of the decarbonylation products (not shown in the
table).

Other examples of the rhodium-catalyzed olefin insertion re-
action are shown in Scheme 3. With 2-(o-styryl)cyclobutanone
having a fluoro group para to the vinyl group 1b and naphthalene
derivative 1c, the o-vinyl groups were successfully inserted be-
tween the carbonyl carbon and the proximal �-carbon to afford
the corresponding eight-membered ring unsaturated ketones.
The conjugated �,�-unsaturated ketones 2 predominated in both
cases. However, 2-(o-styryl)cyclobutanone having an additional
methyl group at the 2-position 1d failed to undergo the rhodium-
catalyzed reaction, probably due to the increased steric conges-
tion between the acyl carbon and the quaternary �-carbon. An
analogous olefin insertion also failed with substrate 1e having

a methyl group at the vinylic position, probably owing to steric
reasons.

In summary, a new catalyzed insertion reaction of an olefin
into a carbon–carbon single bond was developed. Although the
full potential awaits further exploration, the present study dem-
onstrates that the carbon–carbon bond cleavage provides a viable
elementary step for target-directed synthesis.
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Table 1. Effect of phosphine ligands in the rhodium-catalyzed
eight-membered ketone formationa

Ratiob

Entry Phosphine 2a : 3a : Decarbonylation
Products

1 P(o-MeOC6H4)3 75 12 13
2c P(o-MeOC6H4)3 77 14 9
3 PPh(o-MeOC6H4)2 63 18 19
4d PPh2(o-MeOC6H4) 41 14 45

aConditions: Cyclobutanone 1a, [Rh(cod)2]PF6 (5mol%),
and phosphine (36mol%) were heated in m-xylene at
140 �C for 24 h unless otherwise noted. bDetermined by
1HNMR of the crude reaction mixture. cResult with 24
mol% of phosphine. dStarting material 1a remained (29%).
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Scheme 3. Rhodium-catalyzed eight-membered ketone forma-
tion.
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